Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 15(4)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37536321

RESUMO

Progenitor human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models through biofabrication. However, this approach has limitations in terms of achieving the intricate three-dimensional (3D) structure of the natural nasal epithelium. 3D bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of progenitor hNECs ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4 weeks air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes, such as disease modeling, immunological studies, and drug screening.


Assuntos
Bioimpressão , Humanos , Mucosa Nasal/metabolismo , Células Epiteliais , Mucosa Respiratória/metabolismo , Cílios
2.
bioRxiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37034627

RESUMO

Human nasal epithelial cells (hNECs) are an essential cell source for the reconstruction of the respiratory pseudostratified columnar epithelium composed of multiple cell types in the context of infection studies and disease modeling. Hitherto, manual seeding has been the dominant method for creating nasal epithelial tissue models. However, the manual approach is slow, low-throughput and has limitations in terms of achieving the intricate 3D structure of the natural nasal epithelium in a uniform manner. 3D Bioprinting has been utilized to reconstruct various epithelial tissue models, such as cutaneous, intestinal, alveolar, and bronchial epithelium, but there has been no attempt to use of 3D bioprinting technologies for reconstruction of the nasal epithelium. In this study, for the first time, we demonstrate the reconstruction of the nasal epithelium with the use of primary hNECs deposited on Transwell inserts via droplet-based bioprinting (DBB), which enabled high-throughput fabrication of the nasal epithelium in Transwell inserts of 24-well plates. DBB of nasal progenitor cells ranging from one-tenth to one-half of the cell seeding density employed during the conventional cell seeding approach enabled a high degree of differentiation with the presence of cilia and tight-junctions over a 4-week air-liquid interface culture. Single cell RNA sequencing of these cultures identified five major epithelial cells populations, including basal, suprabasal, goblet, club, and ciliated cells. These cultures recapitulated the pseudostratified columnar epithelial architecture present in the native nasal epithelium and were permissive to respiratory virus infection. These results denote the potential of 3D bioprinting for high-throughput fabrication of nasal epithelial tissue models not only for infection studies but also for other purposes such as disease modeling, immunological studies, and drug screening.

3.
Cell Host Microbe ; 31(2): 273-287.e5, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36758521

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, debilitating disorder manifesting as severe fatigue and post-exertional malaise. The etiology of ME/CFS remains elusive. Here, we present a deep metagenomic analysis of stool combined with plasma metabolomics and clinical phenotyping of two ME/CFS cohorts with short-term (<4 years, n = 75) or long-term disease (>10 years, n = 79) compared with healthy controls (n = 79). First, we describe microbial and metabolomic dysbiosis in ME/CFS patients. Short-term patients showed significant microbial dysbiosis, while long-term patients had largely resolved microbial dysbiosis but had metabolic and clinical aberrations. Second, we identified phenotypic, microbial, and metabolic biomarkers specific to patient cohorts. These revealed potential functional mechanisms underlying disease onset and duration, including reduced microbial butyrate biosynthesis and a reduction in plasma butyrate, bile acids, and benzoate. In addition to the insights derived, our data represent an important resource to facilitate mechanistic hypotheses of host-microbiome interactions in ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Microbioma Gastrointestinal , Humanos , Síndrome de Fadiga Crônica/metabolismo , Disbiose , Metabolômica , Fezes
4.
BMC Microbiol ; 21(1): 278, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649516

RESUMO

BACKGROUND: Genomics-driven discoveries of microbial species have provided extraordinary insights into the biodiversity of human microbiota. In addition, a significant portion of genetic variation between microbiota exists at the subspecies, or strain, level. High-resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. High-throughput approaches are needed to acquire and identify the significant species- and strain-level diversity present in the oral, skin, and gut microbiome. Here, we describe and validate a streamlined workflow for cultivating dominant bacterial species and strains from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling. RESULTS: Of total genera discovered by either metagenomic sequencing or culturomics, our cultivation pipeline recovered between 18.1-44.4% of total genera identified. These represented a high proportion of the community composition reconstructed with metagenomic sequencing, ranging from 66.2-95.8% of the relative abundance of the overall community. Fourier-Transform Infrared spectroscopy (FT-IR) was effective in differentiating genetically distinct strains compared with whole-genome sequencing, but was less effective as a proxy for genetic distance. CONCLUSIONS: Use of a streamlined set of conditions selected for cultivation of skin, oral, and gut microbiota facilitates recovery of dominant microbes and their strain variants from a relatively large sample set. FT-IR spectroscopy allows rapid differentiation of strain variants, but these differences are limited in recapitulating genetic distance. Our data highlights the strength of our cultivation and characterization pipeline, which is in throughput, comparisons with high-resolution genomic data, and rapid identification of strain variation.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Técnicas Bacteriológicas/métodos , Microbioma Gastrointestinal/genética , Boca/microbiologia , Pele/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Genoma Bacteriano/genética , Humanos
5.
Brief Bioinform ; 21(3): 885-905, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30972412

RESUMO

It's been over 100 years since the word `gene' is around and progressively evolving in several scientific directions. Time-to-time technological advancements have heavily revolutionized the field of genomics, especially when it's about, e.g. triple code development, gene number proposition, genetic mapping, data banks, gene-disease maps, catalogs of human genes and genetic disorders, CRISPR/Cas9, big data and next generation sequencing, etc. In this manuscript, we present the progress of genomics from pea plant genetics to the human genome project and highlight the molecular, technical and computational developments. Studying genome and epigenome led to the fundamentals of development and progression of human diseases, which includes chromosomal, monogenic, multifactorial and mitochondrial diseases. World Health Organization has classified, standardized and maintained all human diseases, when many academic and commercial online systems are sharing information about genes and linking to associated diseases. To efficiently fathom the wealth of this biological data, there is a crucial need to generate appropriate gene annotation repositories and resources. Our focus has been how many gene-disease databases are available worldwide and which sources are authentic, timely updated and recommended for research and clinical purposes. In this manuscript, we have discussed and compared 43 such databases and bioinformatics applications, which enable users to connect, explore and, if possible, download gene-disease data.


Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Sistemas CRISPR-Cas , Biologia Computacional/métodos , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Anotação de Sequência Molecular
6.
Clin Transl Med ; 8(1): 26, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586224

RESUMO

BACKGROUND: The last decade has seen a dramatic increase in the availability of scientific data, where human-related biological databases have grown not only in count but also in volume, posing unprecedented challenges in data storage, processing, analysis, exchange, and curation. Next generation sequencing (NGS) advancements have facilitated and accelerated the process of identifying genetic variations. Adopting NGS with Whole-Genome and RNA sequencing in a diagnostic context has the potential to improve disease-risk detection in support of precision medicine and drug discovery. Several bioinformatics pipelines have been developed to strengthen variant interpretation by efficiently processing and analyzing sequence data, whereas many published results show how genomics data can be proactively incorporated into medical practices and improve utilization of clinical information. To utilize the wealth of genomics and health, there is a crucial need to generate appropriate gene-disease annotation repositories accessed through modern technology. RESULTS: Our focus here is to create a comprehensive database with mobile access to actionable genes and classified diseases, considered the foundation for clinical genomics and precision medicine. We present a publicly available iOS app, PAS-Gen, which invites global users to freely download it on iPhone and iPad devices, quickly adopt its easy to use interface, and search for genes and related diseases. PAS-Gen was developed using Swift, XCODE, and PHP scripting that uses Web and MySQL database servers, which includes over 59,000 protein-coding and non-coding genes, and over 90,000 classified gene-disease associations. PAS-Gen is founded on the clinical and scientific premise that easier healthcare and genomics data sharing will accelerate future medical discoveries. CONCLUSIONS: We present a cutting-edge gene-disease database with a smart phone application, integrating information on classified diseases and related genes. The PAS-Gen app will assist researchers, medical practitioners, and pharmacists by providing a broad and view of genes that may be implicated in the likelihood of developing certain diseases. This tool with accelerate users' abilities to understand the genetic basis of human complex diseases and by assimilating genomic and phenotypic data will support future work to identify gene-specific designer drugs, target precise molecular fingerprints for tumors, suggest appropriate drug therapies, predict individual susceptibility to disease, and diagnose and treat rare illnesses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...